Using Texture of Tissue Surrounding Microcalcifications on Mammograms for Breast Cancer Diagnosis
نویسندگان
چکیده
Computer-aided systems in mammography focus on detection and characterization/diagnosis of lesions (masses and microcalcifications). Characterization of microcalcifications (MCs) is challenged by the presence of dense breast parenchyma, resulting in low specificity values and thus in unnecessary biopsies. Automated characterization of MCs is mainly based on morphology analysis; the current study investigates whether texture properties of the tissue surrounding MCs can contribute to a more accurate breast cancer diagnosis. A case sample of 100 mammographic images, originating from the Digital Database for Screening Mammography (DDSM) database, is analyzed. All mammograms selected have heterogeneously and extremely dense breast patterns and contain subtle MCs (46 benign, 54 malignant, according to database ground truth tables). Regions of interest (ROIs) of 128x128 pixels, containing the MCs are used for the subsequent texture analysis. ROIs are preprocessed using a wavelet-based contrast enhancement method and a thresholding technique is applied to exclude MCs. Texture features are extracted from the remaining ROI area (surrounding tissue) employing co-occurrence matrices, grey level run length matrices and Laws’ texture energy measures. Differentiation between malignant and benign MCs is performed using a k-nearest neighbour (KNN) classifier and employing the leave-one-out training-testing methodology. The KNN classifier achieved an overall accuracy of 89%, sensitivity 90.74% (49 of 54 malignant cases classified correctly) and specificity 86.96% (40 of the 46 benign cases classified correctly). Texture analysis of the tissue surrounding MCs shows promising results in computer-aided diagnosis of breast cancer and may contribute to the reduction of benign (unnecessary) biopsies.
منابع مشابه
Texture analysis of tissue surrounding microcalcifications on mammograms for breast cancer diagnosis.
Diagnosis of microcalcifications (MCs) is challenged by the presence of dense breast parenchyma, resulting in low specificity values and thus in unnecessary biopsies. The current study investigates whether texture properties of the tissue surrounding MCs can contribute to breast cancer diagnosis. A case sample of 100 biopsy-proved MC clusters (46 benign, 54 malignant) from 85 dense mammographic...
متن کاملA Texture Analysis Approach for Characterizing Microcalcifications on Mammograms
The current study investigates whether texture properties of the tissue surrounding microcalcification (MC) clusters can contribute to breast cancer diagnosis. The case sample analyzed consists of 100 mammographic images, originating from the Digital Database for Screening Mammography (DDSM). All mammograms selected correspond to heterogeneously and extremely dense breast parenchyma and contain...
متن کاملTexture Analysis and Artificial Neural Network for Detection of Clustered Microcalcifications on Mammograms
Clustered microcalcifications on X-ray mammograms are an important sign in the detection of breast cancer. This paper quantitatively describes the usefulness of texture analysis methods for the detection of clustered microcalcifications on digitized mammograms. Comparative studies of texture analysis methods are performed for the proposed texture analysis method, called the surrounding region d...
متن کاملComputer Aided Classification of Architectural Distortion in Mammograms Using Texture Features
Computer aided diagnosis systems provide vital opinion to radiologists in the detection of early signs of breast cancer from mammogram images. Architectural distortions, masses and microcalcifications are the major abnormalities. In this paper, a computer aided diagnosis system has been proposed for distinguishing abnormal mammograms with architectural distortion from normal mammogram. Four typ...
متن کاملContrast Enhancement of Mammograms for Rapid Detection of Microcalcification Clusters
Introduction Breast cancer is one of the most common types of cancer among women. Early detection of breast cancer is the key to reducing the associated mortality rate. The presence of microcalcifications clusters (MCCs) is one of the earliest signs of breast cancer. Due to poor imaging contrast of mammograms and noise contamination, radiologists may overlook some diagnostic signs, specially t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006